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Introducing Isomorphism

Asked if he believes in one God, a mathematician answered: “Yes, up to isomorphism.”
–Godfrey H. Hardy

What does it mean for two things to be equal? And, more practically, how dowe discernwhen
two objects are equal and when they are not? According to Leibniz, two equal objects share all
the same properties (this is known as Leibniz’s Law or as the Indiscernibility of Identicals) [6].
From this point of view, objects are, at least in some way, determined by their properties. This
notion, regardless of whether or not it is “correct,” is not entirely alien. In the physical world,
we differentiate objects on a daily basis by observing and measuring—with sight, touch, smell,
scale, etc.—their various physical properties. In mathematics, thisWittgensteinian notion is made
formal via the Yoneda Lemma, which states that an object is entirely determined by the ways in
which it relates to itself and all other objects. Thus, in order to discern one distinct object from
another, it suffices to find some property that one object exhibits and the other does not. But given
some specific property, how are such comparisons even made? It often helps to “forget” about
every property of the object other than the distinguished one and view two objects as “equal”
if they both share this distinguished property. From this point of view, many objects that are
distinct at face value turn out to be indistinguishable. This blurring of equality is at the heart of
what mathematicians call isomorphism.

The notion of isomorphism is ubiquitous in the study of mathematics, and its precise def-
inition can vary depending on the context. The word itself comes from Ancient Greek: isos,
meaning equal, and morphe, meaning form. Fundamentally, isomorphism can be thought of as
the mathematician’s metaphor—a likening of some aspect of one object to an analogous aspect
of an other. Mathematics is often perceived to be a literal, objective science, and mathematicians
are stereotyped as exacting pedants obsessed with numbers and formulas. But in many ways, the
study of mathematics is much like the exploration of poetry.

Whether in mathematics or poetry, the concept of equality is rooted in the art of comparison.
While poetry is not necessarily concerned with configuring equalities for their own sake, poets
use literary devices such as analogy and metaphor to compare or relate, figuratively, objects or
ideas that are literally inapposite. Analogy is more objective and literal and more closely hews
to comparison—likening things and ideas that are more obviously similar. Metaphor, which is
more subjective and figurative, derives its power from choosing what and how to compare and
contrast. Thus, isomorphism is most appropriately analogized to metaphor because these two
concepts involve the challenge of discerning similarity amidst difference. In poetry, metaphor
is not simply an exercise to determine if disparate objects or ideas are equivalent but rather is a
literary strategy aimed at suggesting an idea or feeling that is otherwise difficult to capture or
express.

For instance, in the following excerpt from The Love Song of J. Alfred Prufrock, T. S. Eliot
paints a dingy, urban scene by likening the smog that settles on a house to a cat [2]:

The yellow fog that rubs its back upon the window-panes,
The yellow smoke that rubs its muzzle on the window-panes,

Licked its tongue into the corners of the evening,
Lingered upon the pools that stand in drains,

Let fall upon its back the soot that falls from chimneys,
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Slipped by the terrace, made a sudden leap,
And seeing that it was a soft October night,
Curled once about the house, and fell asleep.

–T. S. Eliot

Rather than just describing the polluted fog in literal detail, through this metaphor, Eliot conjures
an image of the fog that comes to life by capturing its very movement. The fog and the cat
are not equal things, but in this stanza, the properties distinguishing them are “forgotten” and
the difference between them smudged because their one related property—the similarity in their
movement—is the focus. Referring to the fog as cat-like captures and visually portrays its lithe
movement as it curls and presses against the window panes. In this way, the fog becomes animate,
and it becomes almost difficult to imagine fog as not feline. Similarly, a cat’s ability to insinuate
itself into any space and settle gracefully into any crevice is uncannily fog-like.

Thus, the beauty and bounty of metaphor is that in associating two otherwise unrelated
ideas or objects, the comparison offers a deeper intrinsic understanding of each. At the same
time, the comparison of disparate objects or ideas allows for a more expansive rendering of both,
as one’s intuitions and associations about one object inform how one views the other via the
metaphor. Through Eliot’s deft yoking, the metaphor itself, once surprising given how unrelated
a cat and smog are to each other, now seems obvious, inevitable even. The very meaning and
feeling of the stanza—the sooty dinginess; the feline solitariness; and yet the gentle coziness of a
fall night graced by the conjuring of the idea of a slumbering cat—is ultimately entangled with
the comparison.

The notion of isomorphism in mathematics similarly allows us to compare and draw connec-
tions between seemingly unrelated objects. These mathematical metaphors often have significant
practical value in that they allow us to solve problems that were previously either incredibly diffi-
cult to solve or otherwise intractable. By showing an unknown object is isomorphic to something
that is well-understood, we reveal that the first object shares the relevant, well-known properties
of the second one. Beyond being a useful tool in solving problems, an isomorphism can be beau-
tiful in and of itself, just as the metaphor in Prufrock is appealing independent of the context of
the larger poem.

If the idea of isomorphism is, at its core, the equation of objects sharing some specific prop-
erty, then it is natural to ask how one should go about deciding which property to distinguish.
Fundamentally, the more elementary question is: how does one go about creating definitions in
mathematics? After all, a definition is simply a label we create for the objects that share some
specified collection of properties. Analogously, a poet might ask: what is it about what I am
describing that I should metaphorize?

Creating “the right” definitions extremely difficult and can take years of research to do so
in a particular case, let alone in general. Often, it is the case that we notice peculiar similarities
between disparate objects, and our goal might be to understand what exactly it is about these
objects that is the same. In the next section, we will see that the permutations of the numbers
1, 2, and 3 are “the same” as the symmetries of an equilateral triangle. This is a beautiful (and,
if not seen before, surprising) fact, since, at first, permutations seemingly have little to do with
triangles. Perhaps even more beautiful is the kernel of this connection—what it is, fundamentally,
about the permutations and symmetries that makes them similar. By way of group theory, the
aforementioned equivalence can be reduced to a singular idea: symmetry.
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Thus, deciding what it should mean for two objects to be isomorphic is fundamentally the
same challenge as deciding how to go about creating some sort of universal definition that en-
compasses all of the objects we perceive to be similar in some way. Doing so requires distilling
these perceived similarities into a fundamental singularity. One such example of this sort of
unification of theories is considered to be the most triumphant achievements in modern mathe-
matics: Grothendieck’s definition of a scheme. The notion of a scheme, which we will introduce
briefly and informally in one of the later sections of this paper, is a synthesization of connections
between geometry, algebra, and number theory into a singular object that encompasses and con-
nects all three theories. In this way, isomorphism can transcend metaphor in that it can move
past a simple comparison and ultimately be used to describe what something really is and even
create new definitions and concepts.

Symmetry: an Example

Tyger Tyger, burning bright,
In the forests of the night;

What immortal hand or eye,
Could frame thy fearful symmetry?
–William Blake, The Tyger [1]

Before we get ahead of ourselves discussing symmetry and groups, perhaps it is best to begin
our discussion with a simple example of isomorphism. Consider the following two sets: {𝑎, 𝑏, 𝑐}
and {2, 3, 5}. From a literal perspective, these sets are entirely different. One set consists of letters,
while the other is made up of numbers. But, by simply counting their elements, we immediately
see a connection between the two sets: they are equinumerous, both consisting of three elements.
Thus, if we were to somehow forget the names of the constituent elements of each set, the two
sets would look identical. This link between {𝑎, 𝑏, 𝑐} and {1, 2, 3} is our first example of an iso-
morphism: while the sets themselves are not literally equal, they are figuratively so—they have
the “same form” in that they have the same number of elements.

Formally, an isomorphism between two sets𝐴 and 𝐵 is a mapping 𝑓 : 𝐴 → 𝐵 that is injective—
no two elements of 𝐴 are mapped to the same element of 𝐵—and surjective—every element of 𝐵
can be written as 𝑓 (𝑎) for some 𝑎 in 𝐴. Maps that are both injective and surjective are called
bijective. From this point of view, the bijection given by

𝑎

𝑏

𝑐

1

2

3
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is an isomorphism between {𝑎, 𝑏, 𝑐} and {1, 2, 3} (note that there are 3! = 6 total possible isomor-
phisms {𝑎, 𝑏, 𝑐} → {1, 2, 3}; the one described above is just one of them). If we consider only
finite sets (only to avoid having to discuss sets containing infinitely many elements), then we see
that, from this point of view, two sets are isomorphic if and only if they have the same number
of elements.

We now discuss the group theoretic isomorphism mentioned in the introduction. Consider
the set of permutations of the numbers 1, 2, and 3, i.e., the bijective maps {1, 2, 3} → {1, 2, 3}.
Denote this set by 𝑆3, and note that it has 3! elements. We may represent each permutation as a
2×3matrix of numbers, where a permutation 𝜎 : {1, 2, 3} → {1, 2, 3} is represented by the matrix[

1 2 3
𝜎 (1) 𝜎 (2) 𝜎 (3)

]
.

For example, the permutation taking 1 to 2, 2 to 3, and 3 to 1 is represented by[
1 2 3
2 3 1

]
.

As a set, we saw in the above that 𝑆3 is isomorphic to any other set with 6 elements. Upon further
examination, however, we see that, because they are functions, any two elements 𝜎 and 𝜏 of 𝑆3
can be composed to give a new element 𝜎 ◦𝜏 of 𝑆3. This law of composition is important because
it allows us to combine and relate the elements of 𝑆3 to each other. Upon closer examination, we
see that this operation also has a few interesting properties: the composition is associative; there
exists an identity permutation (i.e., a permutation id such that 𝜎 ◦ id = 𝜎 = id ◦𝜎 for any 𝜎 in 𝑆3);
and every element of 𝑆3 has an inverse (i.e., for each 𝜎 in 𝑆3 there exists a permutation 𝜏 such that
𝜎 ◦ 𝜏 = id = 𝜏 ◦ 𝜎).

Now, let𝐷3 denote the set of symmetries of an equilateral triangle, i.e., the set of all isometries
(bijective, distance-preserving functions) of the plane mapping the triangle to itself. There are 6
total symmetries. Three of the symmetries are rotations about the center of the triangle by 0°,
120°, and 240°; the other three are reflections about the lines connecting a vertex to the center of
the triangle (one of the reflections is pictured below). Since 𝐷3 is a set of functions, it likewise
comes equipped with a law of composition; this operation also has the same notable properties
as the operation on 𝑆3.

While 𝐷3 and 𝑆3 seem to be fundamentally different, with the former being fundamentally
geometric and the latter combinatorial, it turns out that, in some sense, they are the same. One
easy way to see this is as follows. Label the vertices of the triangle 1, 2, and 3. Then, each sym-
metry 𝑓 in 𝐷3 corresponds to a permutation 𝜎𝑓 in 𝑆3 given by the way in which 𝑓 permutes the
vertices of the triangle. In can be checked (albeit somewhat painstakingly) that this correspon-
dence is bijective and that for all 𝑓 and𝑔 in𝐷3 we have 𝜎𝑓 ◦𝑔 = 𝜎𝑓 ◦𝜎𝑔, and vice versa. For example,
label the vertices of the triangle as in the figure below.



5

2 3

1

3 2

1
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We see that the symmetry illustrated above corresponds to the permutation[
1 2 3
1 3 2

]
,

since the vertex 1 is fixed and the vertices 2 and 3 are interchanged. More abstractly, we see that
𝑆3 and 𝐷3 are the same up to relabeling of their elements. Not only are 𝑆3 and 𝐷3 isomorphic as
sets (they both have 6 elements), but their composition laws are the same. If we were to forget
what the elements of 𝑆3 and 𝐷3 are and instead view them as abstract sets equipped with laws of
composition (with the aforementioned properties), then 𝑆3 and 𝐷3 would “look” identical.

This hints at a deeper, more intrinsic connection between 𝑆3 and 𝐷3. Rather than simply
being “the same as sets,” it is the accompanying composition law that unites 𝑆3 and 𝐷3. At its
heart, this similarity is borne from the notion of symmetry. A symmetry of an object should be
thought of as an action—a map that preserves the object—rather than a property an object has.
Formally, it is a “mapping of the object onto itself which preserves [its] structure” [10]. Two
symmetries can be composed; this composition has exactly the same properties as composition
laws on 𝑆3 and 𝐷3. From this point of view, the symmetries of a set are simply the bijections from
the set to itself. In other words, 𝑆3 is simply the set of symmetries of the set {1, 2, 3}. This deeper
connection between 𝑆3 and 𝐷3 leads to the definition of one of the most fundamental objects in
mathematics: the group. Formally, a group is a set equipped with a law of composition satisfying
the same properties that we have been discussing in this section. Informally, a group can be
thought of as the set of symmetries of some object (there are ways of making this precise). In
this way, the definition of the group—this “immortal hand”—transcends the humble comparisons
which led to its creation and truly captures the essence of what 𝑆3 and 𝐷3 are.

Categorical Imperatives

Act only according to that maxim whereby you can at the same time will that it should become a
universal law.

–Immanuel Kant, Groundwork for the Metaphysics of Morals [5]

Having seen some elementary examples of isomorphisms, we now return to a much more
general point of view to introduce some basic category theory. The language of category theory
will not only serve us well in the sequel, but it will also help to reinforce some of the ideas
introduced in the previous section. Category theory makes precise the perceived relationships
between entire collections of objects. The following is adapted from [7] and [8].

A category is defined to be a collection of objects (usually denoted 𝑋,𝑌, . . .) which are related
to one another bymorphisms (usually denoted using labeled arrows 𝑓 : 𝑋 → 𝑌 ). The collection of
morphisms between two objects 𝑋 and 𝑌 is denoted byMor(𝑋,𝑌 ). Morphisms can be composed:
given objects 𝑋, 𝑌, and 𝑍 and morphisms 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑍 , there is a morphism 𝑋 → 𝑍
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called 𝑔 ◦ 𝑓 . This composition law is associative, so for morphisms 𝑓 :𝑊 → 𝑋 , 𝑔 : 𝑋 → 𝑌 , and
ℎ : 𝑌 → 𝑍 , we have

ℎ ◦ (𝑔 ◦ 𝑓 ) = (ℎ ◦ 𝑔) ◦ 𝑓 .

In other words, there is no ambiguity in writing ℎ ◦ 𝑔 ◦ 𝑓 . Finally, for each object 𝑋 in the
category, there is an identity morphism id𝑋 : 𝑋 → 𝑋 such that for any morphism 𝑓 : 𝑋 → 𝑌 we
have 𝑓 = 𝑓 ◦ id𝑋 = id𝑌 ◦𝑓 . We say two objects 𝑋 and 𝑌 of a category are isomorphic if there exist
morphisms 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑋 such that 𝑔 ◦ 𝑓 = id𝑋 and 𝑓 ◦ 𝑔 = id𝑌 . The isomorphism
class of an object 𝑋 is simply the collection of all objects in the category isomorphic to 𝑋 .

One of the most basic examples of a category is the category of sets, denoted Set. Its objects
are, as its name suggests, sets, and the morphisms between sets are the honest-to-god functions
𝑓 : 𝑋 → 𝑌 associating to each element of 𝑥 a corresponding element of 𝑌 , which we denote by
𝑓 (𝑥). From this point of view, it is straightforward to check that the category-theoretic notion of
isomorphism coincides with the notion of isomorphism of sets introduced in the previous section:
two sets are isomorphic if and only if they have the same cardinality.

Another example of a category is the one whose objects are topological spaces and whose
morphisms are continuous mappings between them. Roughly, a topology on a space is a way of
measuring how close two points of the space are. Here, two spaces are isomorphic if and only if
there is a bijection between them and the topologies on the two spaces coincide under this map.
The fundamental properties we distinguish when we say two topological spaces are isomorphic
are the cardinality of the set and the topology it is endowed with.

Note that the distinguished property tied to the notion of isomorphism—the fundamental
structure underlying each object in a category—in a specific setting (e.g., isomorphisms of sets)
is fundamentally captured by specifying the morphisms in a category. In other words, some-
what unsurprisingly, the notions of morphism and isomorphism are inextricably linked. Once
we specify the morphisms in a category we understand what an isomorphism is, and vice versa,
though, given a notion of isomorphism, it is perhaps not always so immediately clear what the
corresponding notion of morphism should be. In the analogy “isomorphism equals metaphor,”
morphisms are akin to weaker metaphors, or perhaps similes. A morphism between two objects
in a category is a relation between them, but often a generic morphism tells us little about the
way in which the objects relate. For example, given topological spaces 𝑋 and 𝑌 , the constant
morphisms taking the entirety of 𝑋 to a single point of 𝑌 are continuous, but they tell us little
about the way in which 𝑋 and 𝑌 relate themselves. Likewise, given two objects, it is often the
case that there exist trivial similes between them—there are manifold ways in which two things
can be thought of as alike. Strengthening the comparison by way of metaphor allows us to go be-
yond knowing that the objects are just related: metaphor allows us to see the very way in which
the objects are similar.

Categories themselves are mathematical objects, so a natural next question is whether there
exists a “category of categories.” All that is needed is a notion of a morphism between two cat-
egories, i.e., a “mapping” from one category to another. Equivalently, what are the fundamental
properties that we distinguish in defining a category? Recall that there are two: composition
of morphisms and the existence of an identity morphism from each object to itself. Thus, a
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morphism between two categories should respect both of these properties. Morphisms between
categories are called functors.1

A (covariant) functor F between two categories C and D (usually denoted F : C d D) is
the data of:

(1) a function F from the objects of C to the objects of 𝐷 ;
(2) for each 𝑋,𝑌 ∈ C, a function F : Mor(𝑋,𝑌 ) → Mor(F (𝑋 ), F (𝑌 )) such that F (id𝑋 ) =

idF (𝑋 ) and F (𝑔 ◦ 𝑓 ) = F (𝑔) ◦ F (𝑓 ) for 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑍 .

We could have just have easily required that F take Mor(𝑋,𝑌 ) → Mor(F (𝑌 ), F (𝑋 )); we call
such a functor contravariant. Note that a functor is exactly the desired notion of “morphism
between categories.” Moreover, every category comes naturally equippedwith an identity functor
taking each object and morphism to itself. If F : C → D and G : D → C are two functors such
that F ◦ G = idD and G ◦ F = idC , then we say that the categories C and D are equivalent. In
other words, C and D are isomorphic in the category of categories.

We illustrate the concept of functor via the aforementioned Yoneda Lemma. A category C is
called locally small if, for any two objects 𝑋 and 𝑌 of C, we have that Mor(𝑋,𝑌 ) is a set (some
authors include this condition in their definition of a category). Locally small categories are of
interest because any locally small category C comes naturally equipped with a class of functors
C d Set indexed by the objects of C. Specifically, for any object 𝑋 in C, there is a functor
F𝑋 : C d Set given by taking each object 𝑌 of C to the set Mor(𝑋,𝑌 ). Yoneda’s lemma, which
is surprisingly easy to prove, states that the functor F𝑋 : C d Set completely determines the
object 𝑋 , up to canonical isomorphism. Colloquially, the data ofMor(𝑋,𝑌 ) for all objects 𝑌 in C
completely determines𝑋 up to a natural isomorphism. Stating the lemma even more colloquially
allows us to see that Yoneda’s lemma is fundamentally Wittgensteinian: an object is entirely
determined (up to natural isomorphism) by the way in which it relates to every other object in
the category. Yoneda’s lemma lends more credence to Leibniz’s Law—that equal objects share
all the same properties—and should at the very least further justify our natural inclination to
understand and communicate this understanding of objects via metaphor.

If we think of a category as the space in which a mathematical theory “lives,” then functors
between categories are analogies between two mathematical theories. Often, there are functors,
or even equivalences, between seemingly unrelated categories. And just as a metaphor between
two seemingly unrelated objects (e.g., between a cat and city smog) lets you view each of the
objects in a new light, these unexpected categorical equivalences allow one to apply insights and
intuition from one field to another, and ultimately help mathematicians discern what something
truly is.

The Oxford Essential Mathematical Travel Dictionary: Algebra–Geometry and
Geometry–Algebra

Translation is that which transforms everything so that nothing changes.
–Günter Grass

1Just as there are morphisms between categories, there is a notion of morphisms between functors—called natural
transformations—that make the collection of functors from one category to another into a category itself! Continuing
in this fashion, we arrive at a kind of meta-categorical structure called an ∞-category.
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A metaphor between algebra and geometry that we learn in high school is the following: the
algebraic equation 𝑦 = 𝑥2−1 can be thought of as the parabola given by plotting the points (𝑥,𝑦)
satisfying 𝑦 = 𝑥2 − 1 in the plane.

𝑥

𝑦

𝑦 = 𝑥2 − 1

As we will see in the sequel, this analogy is in fact an equivalence. The important (algebraic)
properties of the equation imply all of the interesting (geometric) properties of the parabola, and
vice versa. This link between algebra and geometry turns out to be an equivalence of categories—
a metaphor between algebra and geometry. And what is perhaps so striking about this analogy
is that algebra and geometry are seemingly irreconcilably different; the power of the comparison
comes from the fact that our algebraic intuitions are so different from our geometric ones [8].

Consider the field of complex numbers, which we denote usingℂ. The set of ordered 𝑛-tuples
of complex numbers is denoted ℂ𝑛 = {(𝑎1, 𝑎2, . . . , 𝑎𝑛) | 𝑎𝑖 ∈ ℂ}; we may think of ℂ𝑛 as an 𝑛-
dimensional space. Geometrically, we are interested in the simultaneous solutions (𝑎1, . . . , 𝑎𝑛) ∈
ℂ𝑛 to a system of polynomials. In other words, if

𝑓1(𝑥1, . . . , 𝑥𝑛), 𝑓2(𝑥1, . . . , 𝑥𝑛), . . . , 𝑓𝑚 (𝑥1, . . . , 𝑥𝑛)
are a system of 𝑚 polynomials in the 𝑛 variables 𝑥1, . . . , 𝑥𝑛 with complex coefficients, then we
would like to consider the subset of points (𝑎1, . . . , 𝑎𝑛) of ℂ𝑛 such that

𝑓1(𝑎1, . . . , 𝑎𝑛) = 𝑓2(𝑎1, . . . , 𝑎𝑛) = · · · = 𝑓𝑚 (𝑎1, · · · , 𝑎𝑛) = 0.

Wehave already seen one example of such a subset—the parabola cut out by the equation𝑦−𝑥2+1.
Other famous examples include circles, ellipses, the other conic sections, as well as spheres, plane
curves, tori (think doughnuts—pictured below), and quadric surfaces.

A subset 𝑉 of ℂ𝑛 is called algebraic if it is the zero locus of some system of polynomial
equations. These subsets of ℂ𝑛 are precisely the geometric objects we would like to consider.
There are intuitive geometric properties that we can associate to each such subset, e.g., dimension,
genus (number of holes), tangent space, irreducibility (think connectedness), etc. For example,
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the parabola 𝑦 = 𝑥2 − 1 is one-dimensional, since it locally looks like a line, whereas the torus
pictured above locally looks two-dimensional. As we have seen, whenever we encounter a new
family of mathematical objects, we should ask what it means to “map” between two such objects.
In other words, how can we categorize algebraic subsets? A morphism between algebraic subsets
𝑉 ⊂ ℂ𝑛 and𝑊 ⊂ ℂ𝑚 is a function 𝜑 : 𝑉 →𝑊 that is given by polynomials. In other words, there
exist polynomials 𝑓1, . . . , 𝑓𝑚 in ℂ[𝑥1, . . . , 𝑥𝑛] such that

𝜑 (𝑝) = (𝑓1(𝑝), . . . , 𝑓𝑚 (𝑝))

for each point 𝑝 ∈ 𝑉 . This notion of morphism allows us to define the category of complex
algebraic subsets, which we denote using C.

One easy example of a morphism in C is the following. Consider ℂ, and let 𝑃 denote the
vanishing locus of the polynomial 𝑦 −𝑥2 + 1. We have seen this before: 𝑃 is the parabola pictured
previously—the points (𝑥,𝑦) inℂ2 satisfying𝑦 = 𝑥2−1. There is an obviousmorphism𝜑 : ℂ → ℂ2

given by 𝜑 (𝑡) = (𝑡, 𝑡2 − 1); simply projecting onto the 𝑥-axis gives us a morphism 𝜓 : 𝑉 → ℂ

given by 𝜓 (𝑥,𝑦) = 𝑥 for a point (𝑥,𝑦) in 𝑉 . Since 𝜑 ◦ 𝜓 = id𝑃 and 𝜓 ◦ 𝜑 = idℂ, it follows that
𝑃 and 𝐶 are isomorphic as algebraic subsets. This makes precise our geometric intuition that 𝑃
“looks like” a line.

The label “algebraic” is not coincidental; in fact, it is quite suggestive. After all, the geometric
objects that we are dealing with are cut out by algebraic, polynomial equations. Moreover, the
appearance of the category C is suggestive of a functorial algebraic connection. So what is the
corresponding “algebraic category” we will relate C to? And more fundamentally, why should
we look to algebra in the first place? Why not deal with things purely geometrically?

Since it requires more substantive mathematical exposition, we defer answering the first
question to the next paragraph. A partial answer to the latter question is the following: alge-
bra is practical. Despite being motivated by geometry, it turns out that it can be very difficult to
prove certain geometric properties of algebraic subsets purely using geometry. While our geo-
metric intuition is oftentimes quite strong (e.g., the dimensions of the parabola are intuitively
obvious), it turns out that the geometric definitions of relevant properties can be quite clunky
and difficult to work with. On the other hand, while algebra may not be as intuitive, it is better-
understood and easier to manipulate. Thus, in classical algebraic geometry, our goal is to take a
geometric problem—understanding the properties of these shapes cut out by polynomials—and
translate it into an algebra problem which we can solve. Although this connection between al-
gebra and geometry was at first utilitarian, we will later see that there is something deeper and
more fundamental lurking behind the scenes.

We now describe the aforementioned algebraic category which we will relate C to. Let
ℂ[𝑥1, . . . , 𝑥𝑛] denote the set of polynomials in the 𝑛 variables 𝑥1, . . . , 𝑥𝑛 with coefficients in ℂ.
For example, an element of ℂ[𝑥,𝑦] might look like

𝑓 (𝑥,𝑦) = 𝑦2 − 𝑥3 + 𝑥 − 1.

Polynomials are very similar to the integers ℤ. Just as we can add and multiply integers, we can
add and multiply polynomials; this endows ℂ[𝑥1, . . . , 𝑥𝑛] with algebraic structure. In particular,
ℂ[𝑥1, . . . , 𝑥𝑛] is an example of a ring, which should be thought of as a set equipped with a way
of adding and multiplying two elements together. In this way, rings are generalizations of the
integers ℤ. The addition and multiplication operations are required to satisfy the usual associa-
tive, commutative, and distributive properties, and in any ring there exist analogs of 0 and 1, i.e.,
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additive and multiplicative identities, respectively. In a ring 𝑅, denote the identity elements by 0𝑅
and 1𝑅 . The collection of rings forms a category: given two rings 𝑅 and 𝑆 , a morphism of rings is
simply a function 𝑓 : 𝑅 → 𝑆 that preserves the ring addition, multiplication, and multiplicative
identity. In other words, for all 𝑎 and 𝑏 in 𝑅, we must have that

𝑓 (𝑎 + 𝑏) = 𝑓 (𝑎) + 𝑓 (𝑏); 𝑓 (𝑎𝑏) = 𝑓 (𝑎) 𝑓 (𝑏); 𝑓 (1𝑅) = 1𝑆 .
Let Ring denote the category of rings.

Before proceeding, we define an important algebraic substructure of a ring that will be crucial
in connecting the algebra to the geometry. An ideal of a ring 𝑅 is a subset 𝐼 of 𝑅 satisfying the
following three properties:

(1) for all 𝑎 and 𝑏 in 𝐼 , we have 𝑎 + 𝑏 is also in 𝐼 ;
(2) 𝑎 in 𝐼 implies −𝑎 is in 𝐼 ;
(3) for all 𝑎 in 𝐼 and 𝑟 in 𝑅, we have 𝑟 · 𝑎 is in 𝐼 .

In short, 𝐼 is closed under addition, negation, and scaling by any element of 𝑅.
Now, how do we go about linking the geometry and algebra together? We have already seen

that a set of polynomials gives rise to an algebraic subset, namely by considering their common
zeros, but how do we go in the other direction? The answer comes to us via studying functions
on our algebraic subset. First of all, intuitively, we see that the set of functions on an algebraic
subset𝑉—i.e., the morphisms 𝑓 : 𝑉 → ℂ—form a ring. Two such functions 𝑓 and 𝑔 can be added
together and multiplied by setting (𝑓 +𝑔) (𝑝) = 𝑓 (𝑔) +𝑔(𝑝) and (𝑓 𝑔) (𝑝) = 𝑓 (𝑝)𝑔(𝑝); the constant
functions taking all of 𝑉 to 0 and 1 are the additive and multiplicative identities, respectively.
Given a polynomial 𝑓 (𝑥1, . . . , 𝑥𝑛) inℂ[𝑥1, . . . , 𝑥𝑛], we can treat 𝑓 as a morphismℂ𝑛 → ℂ: for each
point (𝑎1, . . . , 𝑎𝑛) in ℂ𝑛 , we can evaluate 𝑓 at this point to get a complex number 𝑓 (𝑎1, . . . , 𝑎𝑛).
From this point of view, the polynomials ℂ[𝑥1, . . . , 𝑥𝑛] can be thought of as the set of functions
on ℂ𝑛 , which take as input a point in ℂ𝑛 and output a complex number. Importantly, two distinct
polynomials give two distinct functions onℂ𝑛 . For an algebraic subset𝑉 ofℂ𝑛 , we might likewise
consider ℂ[𝑥1, . . . , 𝑥𝑛] to be the set of functions on 𝑉 : for a polynomial 𝑓 in ℂ[𝑥1, . . . , 𝑥𝑛] and
point 𝑝 in 𝑉 , we can view 𝑓 as a function on 𝑉 by evaluating 𝑓 at 𝑝 , yielding a complex number
𝑓 (𝑝). Yet there is something wrong with this point of view: it is not necessarily the case that two
distinct polynomials will yield two distinct functions.

Consider the following concrete scenario. Let 𝑉 be the parabola defined by 𝑦 = 𝑥2 − 1, as
before, and consider the polynomials ℂ[𝑥,𝑦]. Let 𝑓 (𝑥,𝑦) be an arbitrary polynomial in ℂ[𝑥,𝑦],
and consider the point (𝑎, 𝑏) in 𝑉 . Since (𝑎, 𝑏) lies on the parabola, we have that 𝑏 = 𝑎2 − 1 If we
view 𝑓 as a function on𝑉 , then we can evaluate 𝑓 at (𝑎, 𝑏) by plugging in 𝑥 = 𝑎 and 𝑦 = 𝑏, which
yields the number 𝑓 (𝑎, 𝑏). Now, consider the polynomial

𝑓 (𝑥,𝑦) + 𝑔(𝑥,𝑦) · (𝑦 − 𝑥2 + 1)
as a function on 𝑉 , where we allow 𝑔 to be any polynomial in ℂ[𝑥,𝑦]. Evaluating at (𝑎, 𝑏), we
see that

𝑓 (𝑎, 𝑏) + 𝑔(𝑎, 𝑏) · (𝑎 − 𝑏2 + 1) = 𝑓 (𝑎, 𝑏) + 𝑔(𝑎, 𝑏) · 0 = 𝑓 (𝑎, 𝑏),
where the first equality follows from the fact that 𝑏 = 𝑎2 − 1. Thus, despite being distinct poly-
nomials in ℂ[𝑥,𝑦], we see that 𝑓 (𝑥,𝑦) and 𝑓 (𝑥,𝑦) + 𝑔(𝑥,𝑦) · (𝑦 − 𝑥2 + 1) agree as functions on
𝑉 . In fact, we see that any two polynomials 𝑓 and 𝑔 whose difference vanishes on 𝑉 give iden-
tical functions on 𝑉 . Now, suppose that 𝑉 is a more general algebraic subset of ℂ𝑛 . The set of
polynomials in ℂ[𝑥1, . . . , 𝑥𝑛] which vanish on 𝑉 forms an ideal of the ring ℂ[𝑥1, . . . , 𝑥𝑛] called
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the vanishing ideal of 𝑉 . Indeed, we see that if 𝑓 and 𝑔 are polynomials such that 𝑓 (𝑝) = 0 and
𝑔(𝑝) = 0 for all 𝑝 in 𝑉 , then 𝑓 + 𝑔, −𝑓 , and 𝑓 · ℎ, where ℎ is an arbitrary polynomial, are all 0 on
𝑉 . To sum up the problem at hand using this new terminology: two polynomials give the same
function on 𝑉 if and only if their difference lies in the vanishing ideal of 𝑉 .

To fix this issue, we simply declare two polynomials 𝑓 and 𝑔 that agree on 𝑉 to be equal. In
other words, 𝑓 and 𝑔 are equal as functions on𝑉 if their difference lies in the vanishing ideal of𝑉 .
From this point of view, we see that distinct equivalence classes of polynomials (i.e., polynomials
whose difference is nonzero on 𝑉 ) give distinct functions on 𝑉 . Thus, we see that the ring of
functions on an algebraic subset 𝑉 of ℂ𝑛 is simply the polynomials ℂ[𝑥1, . . . , 𝑥𝑛] up to this new
notion of equivalence.2 Denote this ring of functions on 𝑉 by Γ(𝑉 ).

We have done a lot of work; we now see the payoff: a precise realization of the aforemen-
tioned metaphor between the functions describing a geometric shape and the shape itself. In
the above, we have secretly been describing a contravariant functor Γ from the category C of
algebraic subsets to Ring, which associates to each algebraic subset 𝑉 its ring of functions Γ(𝑉 ).
We have an association of objects, but what about morphisms? Given a morphism of algebraic
subsets 𝜑 : 𝑉 → 𝑊 , we get a corresponding morphism of rings, denoted 𝜑∗ : Γ(𝑊 ) → Γ(𝑉 ),
taking a function 𝑓 on𝑊 to the function 𝑓 ◦ 𝜑 on 𝑉 . Implicit in this association is the ideal of
functions vanishing on 𝑉 , since this set fundamentally determines what Γ(𝑉 ) is.3

It is natural to ask whether the functor Γ described above is an equivalence of categories. The
short answer is not quite. The category Ring is, in a way, too big: given a generic ring, there is not
a natural way to recover an algebraic subset of ℂ𝑛 . However, by restricting the codomain Ring
to be the subcategory D of finitely-generated, reduced ℂ-algebras, Γ becomes an equivalence
of categories C d D.4 Thus, this connection between algebra and geometry goes beyond just
an intuitive correspondence—there is a deeper equivalence at play, which we will explore in the
coming section.

It can be helpful to think of Γ as a sort of algebro-geometric dictionary, which allows us
take concepts from geometry and translate them into algebra, and vice versa. The algebraic
translations of geometric notions, such as dimension and irreducibility, are far easier to workwith
than their geometric counterparts. Likewise, given an algebraic problem, there is often helpful
geometric intuition that can shed light on how to attempt a solution.5 However, the fact that we
can only translate back and forth between geometry and algebra is somewhat unsatisfying: this
algebro-geometric isomorphism hints at the existence of somemore intrinsic connection between
the two subjects. In other words, we seek some object tor concept hat can simultaneously unify
both the algebraic and geometric aspects of this theory. The idea in question is that of a scheme.

2Without the language of quotients, this notion—that of the coordinate ring of an algebraic subset—gets quite messy.
We are also going to ignore some technicalities entirely in this exposition: in particular, we are neglecting to discuss
radical ideals or nilpotence.
3Those familiar with the notion of quotient rings will recognize that Γ(𝑉 ) is simply the quotient of ℂ[𝑥1, . . . , 𝑥𝑛] by
the vanishing ideal.
4For the sake of accessibility and brevity, we will not further mention the words finitely-generated or reduced or the
word algebra in this context.
5For a far better (not to mention more detailed) introduction to algebraic geometry, we refer to reader to two of the
standard references: the textbooks by Hartshorne and Vakil [4, 9].
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Picturing Primes

I can illustrate the second approach with the... image of a nut to be opened.
The first analogy that came to my mind is of immersing the nut in some softening liquid, and why
not simply water? From time to time you rub so the liquid penetrates better, and otherwise you let
time pass. The shell becomes more flexible through weeks and months—when the time is ripe, hand

pressure is enough, the shell opens like a perfectly ripened avocado!
–Alexandre Grothendieck, Récoltes et Semailles [3]

One of the simplest examples of an algebraic subset ofℂ𝑛 is a set containing a singular point of
ℂ𝑛 . The corresponding vanishing ideal of ℂ[𝑥1, . . . , 𝑥𝑛] turns out to be maximal, in that the only
ideal containing it is the entire ring, ℂ[𝑥1, . . . , 𝑥𝑛]. Conversely, the zero set of a maximal ideal of
ℂ[𝑥1, . . . , 𝑥𝑛] is a single point inℂ𝑛 . Hence, we see that the points making up the geometric space
ℂ𝑛 itself can be viewed purely algebraically as a ideals. Herein lies the deeper idea underlying
the algebro-geometric metaphor we established in the previous section. In order to fully distill
the algebra and geometry into a singular idea, we must bake together the algebra and geometry
into an object that can simultaneously “see” both at once.

In the previous section, we saw that in order to understand the geometry of an algebraic
subset of ℂ𝑛 it is equivalent to understand its associated algebraic ring of functions on the space.
Unfortunately, not every ring of functions corresponds to an algebraic subset of ℂ𝑛 . To fix this,
given a ring 𝑅, we simply construct a space whose associated ring of function is 𝑅 itself. We take
the points of this space to be the set of prime ideals of 𝑅, which contains the maximal ideals of
𝑅.6 This set, denoted Spec(𝑅), can be endowed with a natural topology. Moreover, there is also
a way in which we see that 𝑅 is the ring of functions on Spec(𝑅). By gluing together several of
these spaces Spec(𝑅), we get a scheme.

Considering Spec(ℂ[𝑥1, . . . , 𝑥𝑛]), we see that the resulting space is effectively an enrichment
of ℂ𝑛 , which tells us not only about ℂ𝑛 itself but, at the same time, its algebraic subsets. Though
extremely difficult to understand at first, this simultaneous view of both the algebra and geometry
condenses the data of the isomorphism of categories from the previous section into one object,
distilling our algebraic and geometric perspectives and intuitions into a singularity: the scheme.

The Rising Sea

A different image came to me a few weeks ago.
The unknown thing to be known appeared to me as some stretch of earth or hard marl, resisting
penetration. . . the sea advances insensibly in silence, nothing seems to happen, nothing moves, the

water is so far off you hardly hear it... yet it finally surrounds the resistant substance.
–Alexandre Grothendieck, Récoltes et Semailles [3]

In the above, Grothendieck suggests a metaphor in answer to the question posed in the in-
troduction: how does one go about creating definitions in mathematics? Grothendieck likens the

6Prime ideals are a direct generalization of integral primes. In certain rings, prime ideals behave exactly like prime
numbers, and any ideal can be factored uniquely in to a product of prime ideals. Geometrically, the prime ideals of
ℂ[𝑥1, . . . , 𝑥𝑛] correspond bijectively to irreducible algebraic subsets of ℂ𝑛 , which are algebraic subsets which cannot
be broken down into a union of smaller algebraic subsets. With this in mind, we see that the construction of Spec(𝑅)
unifies the algebraic, geometric, and number-theoretic intuitions via the motto: “primes are points.”
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problem of understanding what a mathematical concept fundamentally is to the problem of sur-
rounding a monolithic mound of earth with water. The water around the rock represents one’s
understanding of the rock. At first, one’s understanding is dwarfed by the vastness of the prob-
lem, and “the water is so far off you hardly hear it.” Yet as one studies further, the sea rises, and
the depth of one’s understanding grows. Eventually, the ocean surrounds and encompasses the
once-daunting mound of earth.

The art of creating a metaphor or isomorphism follows this same process. One starts off
with a simple, seemingly trivial connection, such as the link between an algebraic equation and
its graph. At first, one might ignore the connection, or perhaps think one understands it fully.
But, over time, one begins to realize that there is a deeper connection, and, with practice—by
immersing oneself in the concept—one is able to penetrate the layers of resistance and navigate
with ease. Once idea and understanding merge, what was once impenetrable is knowable.

Isomorphism and metaphor are like waves trying to reach the seemingly unknowable, with
each connection and comparison trying to get to the essence of an idea or object. Whereas anal-
ogy is more pedestrian in its observation of some shared property, metaphor and isomorphism
invite creativity and artistry in how the connection is made. This creative process involves choos-
ing which shared property to distinguish, which by necessity gets to the heart of the relationship
between the two objects or ideas. And if we adopt Wittgenstein’s view that “objects are deter-
mined by the way in which they relate to every other object,” then we see that understanding the
ways in which one object relates to another is equivalent to pursuing a definitional understanding
of what something truly is.

Still, metaphor and isomorphism are not merely means to an end. They are more than tools
to explore how ideas and objects are related or are equal. The artistry in the comparisons can be
beautiful and expressive in their own right. Because the poet and mathematician must creatively
choose which similar property to distinguish and then determine how to express or prove the
equality of that property, the very nature of metaphor and isomorphism allows us to get to the
essence of the objects compared and the notion of equality itself. Bothmetaphor and isomorphism
show us that equality as a property is not about things being identical; rather the notion of
equality as realized in metaphor and isomorphism is about the range of possibility of relatedness
between ideas or objects. Thus, while it may seem that connecting two objects or ideas to each
other fixes them in a limited way—by focusing on how they are related and disregarding ways in
which they are different—in reality, it allows them to be viewed more expansively with an eye to
appreciating their quintessence and beauty.
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